ZONGXP的博客
让技术为产业赋能
- 于 2012-09-25 加入CSDN
获得成就
-
博客专家认证
-
获得1,521次点赞
-
内容获得1,086次评论
-
获得5,217次收藏
荣誉勋章
兴趣领域
- #算法#TensorFlow#CV(computer vision)
- #后端#Python#Linux#C/C++
- #人工智能#算法#图像处理#TensorFlow#视觉/OpenCV#深度学习#Python
TA的专栏
deepstream
14篇NVIDIA Jetson
30篇NVIDIA
6篇人工智能
49篇深度学习
4篇gstreamer开发手册
14篇gstreamer基础教程
17篇TensorFlow
20篇OpenCV
16篇Python
61篇Linux
60篇视频开发
12篇强化学习
6篇Qt
36篇ROS
14篇编程开发
11篇
与我联系
邮箱: zongxp123@gmail.com
微信: zongxp118(请备注公司/学校+交流方向)
位置: 北京,海淀 - 最近
- 文章
- 资源
- 问答
- 课程
- 帖子
- 收藏
- 关注/订阅




本文结合OpenCV官方样例,对官方样例中的代码进行修改,使其能够正常运行,并对自己采集的数据进行实验和讲解。一、准备OpenCV使用棋盘格板进行标定,如下图所示。为了标定相机,我们需要输入一系列三维点和它们对应的二维图像点。在黑白相间的棋盘格上,二维图像点很容易通过角点检测找到。而对于真实世界中的三维点呢?由于我们采集中,是将相机放在一个地方,而将棋盘格定标板进行移动变换不同的位置,然后对其进行拍摄。所以我们需要知道(X,Y,Z)的值。但是简单来说,我们定义棋盘格所在平面为XY平面,即Z=0。对于
DeepStream5.0系列之车牌识别
利用 deepstream 构建车牌识别 pipeline,实现实时车辆检测、车牌检测车牌识别功能。
原创



发布博客于 1 月前
这个问题有点“老生常谈”了,tensorflow 从2015年发布以来,版本变化确实比较多,更新速度也比较快,这也是很多人“吐槽”的一个点,刚熟悉了一个接口,过一段时间可能就更新变化了。
如果你是从零开始学习 tensorflow,建议直接从 tensorflow2 开始,原因有以下几个方面:
(1)TF2 提供高级 keras API,构建、训练模型很方便,也允许创建更复杂的网络结构;
(2)TF2 支持 Eager 模式,在 TF1 中把图计算的定义和执行分离开了,称为“静态图”模式,不利于调试与查找问题,而使用 Eager 模式后,就拥有了“动态图”能力,可以达到交互模式的效果,每做一步就可以看到对应结果,很方便;
(3)从框架设计的角度来讲,版本迭代意味着完善功能,修复bug,TF2 是对 TF1 的升级,必然解决了很多开发者在 TF1 中遇到的问题。
因此,如果入门开始学习的话,直接从 TF2 开始就行,没必要再学习旧版本内容了。
关于入门资料,可以参考官网文档https://tensorflow.google.cn/guide

回答了问题于 4 月前