0 背景
NVIDIA Jetson刷jetpack之后有很多重复操作,本文记录下如何在一个裸的jetpack中进行相关环境的配置,如有其它软件的需求,欢迎留言,我会完善补充
1 开发环境搭建
1.1 替换apt源
1.2 pip
sudo apt install curl
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
sudo python get-pip.py
sudo python3 get-pip.py
替换pip源
cd ~
mkdir ./pip
vim ./pip/pip.conf
# 改为下边内容
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
1.3 切换python
刷机后的ubuntu默认使用python2,我们开发中基本都使用python3,因此切换一下默认python,参考《NVIDIA Jetson之修改默认python/pip版本方法》
1.4 安装jtop
jtop可以用来查看jetson的硬件和软件信息,一定要装上,很方便。使用方法参考《NVIDIA查看CPU、内存、GPU使用情况》
sudo -H pip install jetson-stats
1.5 安装htop
htop主要用来监控进程占用cpu的情况,是jtop的补充
sudo apt install htop
1.6 安装tmux
tmux用来实现关闭终端后依然运行程序。使用方法参考《Linux之Tmux使用教程》
sudo apt-get install tmux
1.7 安装samba
samba用来通过windows快速访问ubuntu上的文件。配置方法参考《Linux之配置samba服务实现文件夹共享》
sudo apt install samba
1.8 安装bmon
bmon用来做网口带宽监控,使用方法参考《Linux之网络带宽监控工具bmon》
sudo apt-get install bmon
2 软件安装
2.1 deepstream
2.2 tensorflow
在官网链接中找到自己对应的版本下载,然后使用pip安装
比如我这里下载的是jetpack4.2中的tensorflow,下载whl文件后拷贝到jetson安装
2.3 keras
安装好tensorflow之后使用pip安装keras,注意keras要与tensorflow版本匹配,参考《Tensorflow之环境版本匹配问题》
2.4 torch
在官方提供的下载链接中找到自己需要的版本,比如我这里下载的是jetpack 4.4的pytorch1.4.0版本,然后使用pip安装即可
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev
pip3 install Cython
pip3 install numpy pip install torch-1.4.0-cp36-cp36m-linux_aarch64.whl
然后需要安装 torchvision,注意版本要与自己安装的torch版本匹配上,我还是以1.4.0为例,介绍torchvision 0.5.0的安装
sudo apt-get install libjpeg-dev zlib1g-dev
git clone --branch v0.5.0 https://github.com/pytorch/vision torchvision
cd torchvision
export BUILD_VERSION=0.5.0
sudo python setup.py install
cd ../
pip install 'pillow<7' # always needed for Python 2.7, not needed torchvision v0.5.0+ with Python 3.6
3 其它
3.1 远程桌面
如果有远程桌面的需求,可以安装nomachine软件,参考《Jetson系列之远程控制软件NoMachine安装使用》