Python调用C++程序的几种方法

参考:https://www.jb51.net/article/104159.htm

0 前言

大家都知道Python的优点是开发效率高,使用方便,C++则是运行效率高,这两者可以相辅相成,不管是在Python项目中嵌入C++代码,或是在C++项目中用Python实现外围功能,都可能遇到Python调用C++模块的需求,下面列举出集中c++代码导出成Python接口的几种基本方法,一起来学习学习吧。

1 原生态导出

Python解释器就是用C实现,因此只要我们的C++的数据结构能让Python认识,理论上就是可以被直接调用的。我们实现test1.cpp如下

#include <Python.h> 
  
int Add(int x, int y) 
{ 
 return x + y; 
} 
  
int Del(int x, int y) 
{ 
 return x - y; 
} 
  
PyObject* WrappAdd(PyObject* self, PyObject* args) 
{ 
 int x, y; 
 if (!PyArg_ParseTuple(args, "ii", &x, &y)) 
 { 
  return NULL; 
 } 
 return Py_BuildValue("i", Add(x, y)); 
} 
  
PyObject* WrappDel(PyObject* self, PyObject* args) 
{ 
 int x, y; 
 if (!PyArg_ParseTuple(args, "ii", &x, &y)) 
 { 
  return NULL; 
 } 
 return Py_BuildValue("i", Del(x, y)); 
} 
static PyMethodDef test_methods[] = { 
 {"Add", WrappAdd, METH_VARARGS, "something"}, 
 {"Del", WrappDel, METH_VARARGS, "something"}, 
 {NULL, NULL} 
}; 
  
extern "C"
void inittest1() 
{ 
 Py_InitModule("test1", test_methods); 
}

编译命令如下

g++ -fPIC -shared test1.cpp -I/usr/include/python2.7 -o test1.so 

-fPIC:生成位置无关目标代码,适用于动态连接;
-L path:表示在path目录中搜索库文件,如-L.表示在当前目录;
-I path:表示在path目录中搜索头文件;
-o file:制定输出文件为file;
-shared:生成一个共享库文件;

 运行Python解释器,测试如下

>>> import test1 
>>> test1.Add(1,2) 
3 

这里要注意一下几点

  1. 如果生成的动态库名字为test1,则源文件里必须有inittest1这个函数,且Py_InitModule的第一个参数必须是“test1”,否则Python导入模块会失败
  2. 如果是cpp源文件,inittest1函数必须用extern "C"修饰,如果是c源文件,则不需要。原因是Python解释器在导入库时会寻找initxxx这样的函数,而C和C++对函数符号的编码方式不同,C++在对函数符号进行编码时会考虑函数长度和参数类型,具体可以通过nm test1.so查看函数符号,c++filt工具可通过符号反解出函数原型

2 通过boost实现

我们使用和上面同样的例子,实现test2.cpp如下

#include <boost/python/module.hpp> 
#include <boost/python/def.hpp> 
using namespace boost::python; 
  
int Add(const int x, const int y) 
{ 
 return x + y; 
} 
  
int Del(const int x, const int y) 
{ 
 return x - y; 
} 
  
BOOST_PYTHON_MODULE(test2) 
{ 
 def("Add", Add); 
 def("Del", Del); 
}

其中BOOST_PYTHON_MODULE的参数为要导出的模块名字,编译命令如下

g++ test2.cpp -fPIC -shared -o test2.so -I/usr/include/python2.7 -I/usr/local/include -L/usr/local/lib -lboost_python 

注意: 编译时需要指定boost头文件和库的路径,我这里分别是/usr/local/include和/usr/local/lib

或者通过setup.py导出模块

#!/usr/bin/env python 
from distutils.core import setup 
from distutils.extension import Extension 
  
setup(name="PackageName", 
 ext_modules=[ 
  Extension("test2", ["test2.cpp"], 
  libraries = ["boost_python"]) 
 ])

Extension的第一个参数为模块名,第二个参数为文件名

执行如下命令

python setup.py build 

这时会生成build目录,找到里面的test2.so,并进入同一级目录,验证如下

>>> import test2 
>>> test2.Add(1,2) 
3
>>> test2.Del(1,2) 
-1 

3 导出类

test3.cpp实现如下

#include <boost/python.hpp> 
using namespace boost::python; 
  
class Test 
{ 
public: 
 int Add(const int x, const int y) 
 { 
  return x + y; 
 } 
  
 int Del(const int x, const int y) 
 { 
  return x - y; 
 } 
}; 
  
BOOST_PYTHON_MODULE(test3) 
{ 
 class_<Test>("Test") 
  .def("Add", &Test::Add) 
  .def("Del", &Test::Del); 
}

注意:BOOST_PYTHON_MODULE里的.def使用方法有点类似Python的语法,等同于

class_<Test>("Test").def("Add", &Test::Add); 
class_<Test>("Test").def("Del", &Test::Del); 

编译命令如下

g++ test3.cpp -fPIC -shared -o test3.so -I/usr/include/python2.7 -I/usr/local/include/boost -L/usr/local/lib -lboost_python 

测试如下

>>> import test3 
>>> test = test3.Test() 
>>> test.Add(1,2) 
3
>>> test.Del(1,2) 
-1 

4 导出变参函数

test4.cpp实现如下

#include <boost/python.hpp> 
using namespace boost::python; 
  
class Test 
{ 
public: 
 int Add(const int x, const int y, const int z = 100) 
 { 
  return x + y + z; 
 } 
}; 
  
int Del(const int x, const int y, const int z = 100) 
{ 
 return x - y - z; 
} 
  
BOOST_PYTHON_MEMBER_FUNCTION_OVERLOADS(Add_member_overloads, Add, 2, 3) 
BOOST_PYTHON_FUNCTION_OVERLOADS(Del_overloads, Del, 2, 3) 
  
BOOST_PYTHON_MODULE(test4) 
{ 
 class_<Test>("Test") 
  .def("Add", &Test::Add, Add_member_overloads(args("x", "y", "z"), "something")); 
 def("Del", Del, Del_overloads(args("x", "y", "z"), "something")); 
}

这里Add和Del函数均采用了默认参数,Del为普通函数,Add为类成员函数,这里分别调用了不同的宏,宏的最后两个参数分别代表函数的最少参数个数和最多参数个数

编译命令如下

g++ test4.cpp -fPIC -shared -o test4.so -I/usr/include/python2.7 -I/usr/local/include/boost -L/usr/local/lib -lboost_python 

测试如下

>>> import test4 
>>> test = test4.Test() 
>>> print test.Add(1,2) 
103
>>> print test.Add(1,2,z=3) 
6
>>> print test4.Del(1,2) 
-1
>>> print test4.Del(1,2,z=3) 
-1

5 导出带Python对象的接口

既然是导出为Python接口,调用者难免会使用Python特有的数据结构,比如tuple,list,dict,由于原生态方法太麻烦,这里只记录boost的使用方法,假设要实现如下的Python函数功能

def Square(list_a) 
{ 
 return [x * x for x in list_a] 
}

即对传入的list每个元素计算平方,返回list类型的结果,代码如下

#include <boost/python.hpp> 
  
boost::python::list Square(boost::python::list& data) 
{ 
 boost::python::list ret; 
 for (int i = 0; i < len(data); ++i) 
 { 
  ret.append(data[i] * data[i]); 
 } 
  
 return ret; 
} 
  
BOOST_PYTHON_MODULE(test5) 
{ 
 def("Square", Square); 
}

编译命令如下

g++ test5.cpp -fPIC -shared -o test5.so -I/usr/include/python2.7 -I/usr/local/include/boost -L/usr/local/lib -lboost_python 

测试如下

>>> import test5 
>>> test5.Square([1,2,3]) 
[1, 4, 9] 

boost实现了boost::python::tuple, boost::python::list, boost::python::dict这几个数据类型,使用方法基本和Python保持一致,具体方法可以查看boost头文件里的boost/python/tuple.hpp及其它对应文件

另外比较常用的一个函数是boost::python::make_tuple() ,使用方法如下

boost::python::tuple(int a, int b, int c) 
{  
    return boost::python::make_tuple(a, b, c); 
} 

 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页